Certain strongly clean matrices over local rings


ÇALCI T., Chen H.

TURKISH JOURNAL OF MATHEMATICS, cilt.42, sa.5, ss.2296-2303, 2018 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 42 Sayı: 5
  • Basım Tarihi: 2018
  • Doi Numarası: 10.3906/mat-1802-10
  • Dergi Adı: TURKISH JOURNAL OF MATHEMATICS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, TR DİZİN (ULAKBİM)
  • Sayfa Sayıları: ss.2296-2303
  • Anahtar Kelimeler: Matrix ring, strongly clean matrix, quasipolar matrix, PSEUDO DRAZIN INVERSE, BANACH-ALGEBRAS, ELEMENTS, PROPERTY
  • Ankara Üniversitesi Adresli: Evet

Özet

We are concerned about various strongly clean properties of a kind of matrix subrings L-(s) (R) over a local ring R. Let R be a local ring, and let s is an element of C(R). We prove that A is an element of L-(s) (R) is strongly clean if and only if A or I-2 - A is invertible, or A is similar to a diagonal matrix in L-(s) (R). Furthermore, we prove that A is an element of L-(s) (R) is quasipolar A if and only if A is an element of GL(2) (R) or A is an element of L-(s)(R)(qnil) or A is similar to a diagonal matrix in