Photonic, spectroscopic properties and electronic structure of PTCDI-C8 organic nanostructure


Gunduz B., Kurban M.

VIBRATIONAL SPECTROSCOPY, cilt.96, ss.46-51, 2018 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 96
  • Basım Tarihi: 2018
  • Doi Numarası: 10.1016/j.vibspec.2018.02.008
  • Dergi Adı: VIBRATIONAL SPECTROSCOPY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.46-51
  • Anahtar Kelimeler: Optical techniques, Structure analysis, Photonic properties, Electronic properties, Density-functional theory, OPTICAL-PROPERTIES, PERYLENE DIIMIDES, SOLAR-CELLS, DENSITY, FLUORESCENT, SOLUBILITY, BEHAVIOR, GAPS, DYES, FILM
  • Ankara Üniversitesi Adresli: Hayır

Özet

The changes in the structural, electronic, vibrational and photonic properties of N,N'-Dioctyl-3,4,9,10-perylenedicarboximide (PTCDI-C8) one-dimensional nanostucture have been investigated using experimental and theoretical techniques. The semi-empirical relations have been proposed for the calculation of the refractive index (n)from its measured and calculated energy gap (E-g) data. FT-IR and FT-Raman spectra characteristics and structural, spectroscopic and electronic properties such as HOMO-LUMO energies, harmonic frequencies, Mullkien atomic charges, dipole moments, radial distribution functions (RDFs) and coordination number of binary interactions were recorded with the aid of density functional theory (DFT) based on optimized structure for gas phase and different solvent environments. Moreover, ultraviolet-visible (UV-vis) spectral analysis and energy gaps has been carried out using experimental techniques and time-dependent (TD) DFT calculations. The results herein obtained reveal that PTCDI-C8 material is suitable for sensitivity applications due to its appropriate optoelectronic paramaters. (C) 2018 Elsevier B.V. All rights reserved.