COMPUTATIONAL & APPLIED MATHEMATICS, cilt.37, sa.3, ss.2503-2518, 2018 (SCI-Expanded)
In this paper, we introduce the fractional analog of a chemical model arouse from a mathematical paradox attributed to Dietrich Braess. Two basic examples which serve fractional kinetic models as better suited models to the real data sets than the integer-order counterparts are given. Existence and uniqueness of the rebuilt model's solutions are proved. It is shown that asymptotic stability conditions of the solutions are provided. A comparison is made between two different solution methods and numerical simulations are also presented to exemplify the mathematical outcomes.