The stability and validity of automated vocal analysis in preverbal preschoolers with autism spectrum disorder


Creative Commons License

Woynaroski T., Oller D. K., Keceli-Kaysili B., Xu D., Richards J. A., Gilkerson J., ...Daha Fazla

AUTISM RESEARCH, cilt.10, sa.3, ss.508-519, 2017 (SCI-Expanded, SSCI, Scopus) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 10 Sayı: 3
  • Basım Tarihi: 2017
  • Doi Numarası: 10.1002/aur.1667
  • Dergi Adı: AUTISM RESEARCH
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Social Sciences Citation Index (SSCI), Scopus
  • Sayfa Sayıları: ss.508-519
  • Anahtar Kelimeler: useful speech, language, vocalizations, automated vocal analysis, LENA, preschool, preverbal, autism, NATURALISTIC RECORDINGS, COMMUNICATION, CHILDREN, PREDICTORS, DELAY
  • Açık Arşiv Koleksiyonu: AVESİS Açık Erişim Koleksiyonu
  • Ankara Üniversitesi Adresli: Evet

Özet

Theory and research suggest that vocal development predicts useful speech in preschoolers with autism spectrum disorder (ASD), but conventional methods for measurement of vocal development are costly and time consuming. This longitudinal correlational study examines the reliability and validity of several automated indices of vocalization development relative to an index derived from human coded, conventional communication samples in a sample of preverbal preschoolers with ASD. Automated indices of vocal development were derived using software that is presently in development and/or only available for research purposes and using commercially available Language ENvironment Analysis (LENA) software. Indices of vocal development that could be derived using the software available for research purposes: (a) were highly stable with a single day-long audio recording, (b) predicted future spoken vocabulary to a degree that was nonsignificantly different from the index derived from conventional communication samples, and (c) continued to predict future spoken vocabulary even after controlling for concurrent vocabulary in our sample. The score derived from standard LENA software was similarly stable, but was not significantly correlated with future spoken vocabulary. Findings suggest that automated vocal analysis is a valid and reliable alternative to time intensive and expensive conventional communication samples for measurement of vocal development of preverbal preschoolers with ASD in research and clinical practice. Autism Res2017, 10: 508-519. (c) 2016 International Society for Autism Research, Wiley Periodicals, Inc.