Measurement of tt¯ production in association with additional b-jets in the eμ final state in proton–proton collisions at s = 13 TeV with the ATLAS detector


Aad G., Aakvaag E., Abbott B., Abdelhameed S., Abeling K., Abicht N., ...Daha Fazla

Journal of High Energy Physics, cilt.2025, sa.1, 2025 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 2025 Sayı: 1
  • Basım Tarihi: 2025
  • Doi Numarası: 10.1007/jhep01(2025)068
  • Dergi Adı: Journal of High Energy Physics
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, INSPEC, zbMATH, Directory of Open Access Journals, Nature Index
  • Anahtar Kelimeler: Hadron-Hadron Scattering, Top Physics
  • Ankara Üniversitesi Adresli: Evet

Özet

This paper presents measurements of top-antitop quark pair (tt¯) production in association with additional b-jets. The analysis utilises 140 fb−1 of proton–proton collision data collected with the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 13 TeV. Fiducial cross-sections are extracted in a final state featuring one electron and one muon, with at least three or four b-jets. Results are presented at the particle level for both integrated cross-sections and normalised differential cross-sections, as functions of global event properties, jet kinematics, and b-jet pair properties. Observable quantities characterising b-jets originating from the top quark decay and additional b-jets are also measured at the particle level, after correcting for detector effects. The measured integrated fiducial cross-sections are consistent with tt¯bb¯ predictions from various next-to-leading-order matrix element calculations matched to a parton shower within the uncertainties of the predictions. State-of-the-art theoretical predictions are compared with the differential measurements; none of them simultaneously describes all observables. Differences between any two predictions are smaller than the measurement uncertainties for most observables.