Copy For Citation
CHEN H., ÇALCI T., HALICIOĞLU S., Shile G.
REVISTA DE LA UNION MATEMATICA ARGENTINA, vol.62, no.2, pp.415-422, 2021 (SCI-Expanded)
-
Publication Type:
Article / Article
-
Volume:
62
Issue:
2
-
Publication Date:
2021
-
Doi Number:
10.33044/revuma.1858
-
Journal Name:
REVISTA DE LA UNION MATEMATICA ARGENTINA
-
Journal Indexes:
Science Citation Index Expanded (SCI-EXPANDED), Scopus, MathSciNet, zbMATH, Directory of Open Access Journals, DIALNET
-
Page Numbers:
pp.415-422
-
Keywords:
Linear map, Drazin inverse, local ring, SUM, IDEMPOTENCE, MODULES
-
Ankara University Affiliated:
Yes
Abstract
Let R" role="presentation" >R be a local ring and suppose that there exists a∈F∗" role="presentation" >a∈F∗ such that a6≠1" role="presentation" >a6≠1; also let T:Mn(R)→Mm(R)" role="presentation" >T:Mn(R)→Mm(R) be a linear map preserving Drazin inverses. Then we prove that T=0" role="presentation" >T=0 or n=m" role="presentation" >n=m and T" role="presentation" >T preserves idempotents. We thereby determine the form of linear maps from Mn(R)" role="presentation" >Mn(R) to Mm(R)" role="presentation" >Mm(R) preserving Drazin inverses of matrices.