A new framework using deep auto-encoder and energy spectral density for medical waveform data classification and processing


Karim A. M., Guzel M. S., TOLUN M. R., Kaya H., Celebi F.

BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, cilt.39, sa.1, ss.148-159, 2019 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 39 Sayı: 1
  • Basım Tarihi: 2019
  • Doi Numarası: 10.1016/j.bbe.2018.11.004
  • Dergi Adı: BIOCYBERNETICS AND BIOMEDICAL ENGINEERING
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.148-159
  • Anahtar Kelimeler: Energy spectral density, Deep auto-encoder, Deep learning, Medical waveform data process, ARTIFICIAL NEURAL-NETWORK, EEG, EPILEPSY
  • Ankara Üniversitesi Adresli: Evet

Özet

This paper proposes a new framework for medical data processing which is essentially designed based on deep autoencoder and energy spectral density (ESD) concepts. The main novelty of this framework is to incorporate ESD function as feature extractor into a unique deep sparse auto-encoders (DSAEs) architecture. This allows the proposed architecture to extract more qualified features in a shorter computational time compared with the conventional frameworks.