PRINCIPAL FUNCTIONS OF MATRIX STURM-LIOUVILLE OPERATORS WITH BOUNDARY CONDITIONS DEPENDENT ON THE SPECTRAL PARAMETER


Creative Commons License

Katar D., OLGUN M., Coskun C.

MISKOLC MATHEMATICAL NOTES, cilt.15, sa.2, ss.525-535, 2014 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 15 Sayı: 2
  • Basım Tarihi: 2014
  • Doi Numarası: 10.18514/mmn.2014.1173
  • Dergi Adı: MISKOLC MATHEMATICAL NOTES
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.525-535
  • Anahtar Kelimeler: eigenvalues, spectral singularities, spectral analysis, Sturm-Liouville operator, non-selfadjoint matrix operator, principal functions, BORG-TYPE THEOREMS, QUADRATIC PENCIL, SCHRODINGER-OPERATORS, DIFFERENCE-OPERATORS, DISCRETE SPECTRUM, DIRAC OPERATORS, TRACE FORMULAS, SINGULARITIES, EIGENPARAMETER, EXPANSION
  • Ankara Üniversitesi Adresli: Evet

Özet

Let L denote operator generated in L2. R C; E/ by the differential expression l. y/ D y 0 0 CQ. x/ y; x 2 R C WD O 0; 1/; and the boundary condition. A0CA1 / Y 0.0; /. B0CB1 / Y. 0; / D0, whereQ is a matrixvalued function and A0; A1; B0; B1 are non- singular matrices, with A0B1 A1B0 0: In this paper, we investigate the principal functions corresponding to the eigenvalues and the spectral singularities of L: