Transverse momentum and process dependent azimuthal anisotropies in √sNN=8.16 TeV p+Pb collisions with the ATLAS detector


Creative Commons License

Aad G., Abbott B., Abbott D., Abud A. A., Abeling K., Abhayasinghe D., ...More

European Physical Journal C, vol.80, no.1, 2020 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 80 Issue: 1
  • Publication Date: 2020
  • Doi Number: 10.1140/epjc/s10052-020-7624-4
  • Journal Name: European Physical Journal C
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Communication Abstracts, INSPEC, zbMATH, Directory of Open Access Journals
  • Ankara University Affiliated: Yes

Abstract

The azimuthal anisotropy of charged particles produced in sNN=8.16 TeV p+Pb collisions is measured with the ATLAS detector at the LHC. The data correspond to an integrated luminosity of 165 nb - 1 that was collected in 2016. Azimuthal anisotropy coefficients, elliptic v2 and triangular v3, extracted using two-particle correlations with a non-flow template fit procedure, are presented as a function of particle transverse momentum (pT) between 0.5 and 50 GeV. The v2 results are also reported as a function of centrality in three different particle pT intervals. The results are reported from minimum-bias events and jet-triggered events, where two jet pT thresholds are used. The anisotropies for particles with pT less than about 2 GeV are consistent with hydrodynamic flow expectations, while the significant non-zero anisotropies for pT in the range 9–50 GeV are not explained within current theoretical frameworks. In the pT range 2–9 GeV, the anisotropies are larger in minimum-bias than in jet-triggered events. Possible origins of these effects, such as the changing admixture of particles from hard scattering and the underlying event, are discussed.