Nanotoxicity modelling and removal efficiencies of ZnONP


FİKİRDEŞİCİ ERGEN Ş., Tunca E. U.

INTERNATIONAL JOURNAL OF PHYTOREMEDIATION, cilt.20, sa.1, ss.16-26, 2018 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 20 Sayı: 1
  • Basım Tarihi: 2018
  • Doi Numarası: 10.1080/15226514.2017.1319324
  • Dergi Adı: INTERNATIONAL JOURNAL OF PHYTOREMEDIATION
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.16-26
  • Anahtar Kelimeler: consortium, estimation models, nanotoxicity, regresyon, remediation, METAL-OXIDE NANOPARTICLES, CRUSTACEANS DAPHNIA-MAGNA, LEMNA-MINOR-L, CUO NANOPARTICLES, SILVER NANOPARTICLES, HEAVY-METALS, ARABIDOPSIS-THALIANA, CHROMOLAENA-ODORATA, EXPOSURE SCENARIOS, ESCHERICHIA-COLI
  • Ankara Üniversitesi Adresli: Hayır

Özet

In this paper the aim is to investigate the toxic effect of zinc oxide nanoparticles (ZnONPs) and is to analyze the removal of ZnONP in aqueous medium by the consortium consisted of Daphnia magna and Lemna minor. Three separate test groups are formed: L. minor (L), D. magna (D), and L. minor + D. magna (L+D) and all these test groups are exposed to three different nanoparticle concentrations (0.3; 3.0; and 30.0 mg L-1). Time-dependent, concentration-dependent, and group-dependent removal efficiencies are statistically compared by non-parametric Mann-Whitney U test and statistically significant differences are observed. The optimum removal values are observed at the highest concentration 97: 14ey U t % for L, 94: 51ey U t% for D; and 97: 27ey U t% for L+D and realized at 96 h for all test groups (96 h > 24 h > 188 h). There is no statistically significant differences in removal at low concentrations (0.3 and 3.0 mg L-1) in terms of groups but L test groups are more efficient than D test groups in removal of ZnONP, at 30.0 mg L-1 (L=L+D>D) concentration. Regression analysis is also performed for all prediction models. Different models are tested and it is seen that cubic models show the highest predicted values (R-2). In toxicity models, R-2 values are obtained at (0.892, 0.997) interval. A simple solution-phase method is used to synthesize ZnO nanoparticles. Dynamic Light Scattering and X-Ray Diffraction (XRD) are used to detect the particle size of synthesized ZnO nanoparticles.