Development and characterization of skin substitutes from electrospun polycaprolactone/silk fibroin


Yildiz G., ARSLAN Y. E., DERKUŞ B., Sezgin B., Menceloglu Y. Z., Bayar G. R.

Journal of Bioactive and Compatible Polymers, cilt.39, sa.1, ss.46-62, 2024 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 39 Sayı: 1
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1177/08839115231216998
  • Dergi Adı: Journal of Bioactive and Compatible Polymers
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Aerospace Database, BIOSIS, Biotechnology Research Abstracts, Communication Abstracts, Compendex, INSPEC, Metadex, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.46-62
  • Anahtar Kelimeler: biomaterials, Electrospinning, PCL, polymer nanofibers, silk fibroin, skin tissue engineering
  • Ankara Üniversitesi Adresli: Evet

Özet

Tissue-engineered skin substitutes have great potential to treat chronic wounds and high-degree burns. Existing solutions, such as Integra Dermal Template, are extensively used for skin defects. However, these templates are still lacking in terms of recreating the functionality of the native tissue and providing scarless healing. In this study, polycaprolactone/silk fibroin (PCL/SF)-based nanofibers with varying blends were fabricated and characterized to develop a novel skin substitute. Morphological analysis showed that the nanofiber distribution of each sample was homogenous without showing any beads. In terms of mechanical properties, all the samples other than SF showed sufficient mechanical strength. It was observed that adding a specific amount of SF into the PCL nanofiber improves the tensile strength of the samples due to the introduction of intermolecular interactions from the functional groups of SF. In addition, incorporating SF into PCL improved Young’s modulus of the PCL nanofibers since SF provides stiffness and structural integrity to the overall structure. Water contact angle analysis was performed as the hydrophilicity of a biomaterial is a significant factor in cell functionality. Each sample had a contact angle between 33° and 48°, indicating the adequate hydrophilicity of nanofibers for advanced cell proliferation other than PCL. Cell proliferation and viability studies were conducted with the seeding of primary human keratinocytes on the samples. It was examined that scaffolds containing blends of PCL and SF resulted in higher cell proliferation and viability after 7 days compared to pure PCL and SF nanofibers.