A green approach for the analysis of emtricitabine bictegravir and tenofovir in a pharmaceutical preparation using novel HPLC and spectrophotometric methods


TIRIS G., Genc A. A., Oven E., ERK N.

Biomedical Chromatography, cilt.37, sa.10, 2023 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 37 Sayı: 10
  • Basım Tarihi: 2023
  • Doi Numarası: 10.1002/bmc.5712
  • Dergi Adı: Biomedical Chromatography
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, BIOSIS, Biotechnology Research Abstracts, CAB Abstracts, Chemical Abstracts Core, Chimica, EMBASE, MEDLINE, Veterinary Science Database
  • Anahtar Kelimeler: bictegravir, determination, emtricitabine, HPLC, spectrophotometry, tenofovir, FUMARATE, VALIDATION
  • Ankara Üniversitesi Adresli: Evet

Özet

Two spectrophotometric techniques and a novel HPLC method were consecutively applied for the simultaneous quantification of the active ingredients of emtricitabine (EMC), tenofovir (TNF), and bictegravir (BIC). The first spectrophotometric method is the dual amplitude difference method coupled with the ratio difference method. TNF was determined using the dual amplitude difference method, while BIC and EMC were determined using the ratio difference method. The second spectrophotometric method was the constant multiplication with absorbance extraction method, and was applied for the determination of active substances used in the treatment of human immunodeficiency virus (HIV) infection. BIC was determined by the constant multiplication method, whereas EMC and TNF were determined using the absorbance extraction method. For the HPLC method, the XBridge C18 column was used. The solvent system comprised acetonitrile:phosphate buffer (pH 6.8; 30:70 v/v). All active ingredients were detected at 260.0 nm, and the flow rate was 0.5 mL/min. The experiment was completed within 5.5 min. The experiments carried out enabled the simultaneous analysis of the three active substances and they were economical, fast, environmentally friendly, and simple. The methods have been successfully applied to prepare mixtures and tablets without matrix interference. The methods were evaluated in terms of green chemistry. The methods have been validated according to International Council for Harmonisation (ICH) guidelines.