World Neurosurgery, vol.173, 2023 (SCI-Expanded)
Background: Mildronate is a useful anti-ischemic agent and has antiinflammatory, antioxidant, and neuroprotective activities. The aim of this study is to investigate the potential neuroprotective effects of mildronate in the experimental rabbit spinal cord ischemia/reperfusion injury (SCIRI) model. Methods: Rabbits were randomized into 5 groups of 8 animals as groups 1 (control), 2 (ischemia), 3 (vehicle), 4 (30 mg/kg methylprednisolone [MP]), and 5 (100 mg/kg mildronate). The control group underwent only laparotomy. The other groups have the spinal cord ischemia model by a 20-minute aortic occlusion just caudal to the renal artery. The malondialdehyde and catalase levels and caspase-3, myeloperoxidase, and xanthine oxidase activities were investigated. Neurologic, histopathologic, and ultrastructural evaluations were also performed. Results: The serum and tissue myeloperoxidase, malondialdehyde, and caspase-3 values of the ischemia and vehicle groups were statistically significantly higher than those of the MP and mildronate groups (P < 0.001). Serum and tissue catalase values of the ischemia and vehicle groups were statistically significantly lower than those of the control, MP, and mildronate groups (P < 0.001). The histopathologic evaluation showed a statistically significantly lower score in the mildronate and MP groups than in the ischemia and vehicle groups (P < 0.001). The modified Tarlov scores of the ischemia and vehicle groups were statistically significantly lower than those of the control, MP, and mildronate groups (P < 0.001). Conclusions: This study presented the antiinflammatory, antioxidant, antiapoptotic, and neuroprotective effects of mildronate on SCIRI. Future studies will elucidate its possible use in clinical settings in SCIRI.