Dynamical algebras of general two-parametric Poschl-Teller Hamiltonians


Calzada J. A., KURU Ş., Negro J., del Olmo M. A.

ANNALS OF PHYSICS, cilt.327, sa.3, ss.808-822, 2012 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 327 Sayı: 3
  • Basım Tarihi: 2012
  • Doi Numarası: 10.1016/j.aop.2011.12.014
  • Dergi Adı: ANNALS OF PHYSICS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.808-822
  • Anahtar Kelimeler: Factorization, Dynamical algebras, Poschl-Teller potentials, RADIAL SCHRODINGER-EQUATION, LOWERING OPERATORS, COHERENT STATES, FACTORIZATION, OSCILLATOR, FAMILY, MODEL
  • Ankara Üniversitesi Adresli: Evet

Özet

A class of operators connecting general two-parametric Poschl-Teller Flamiltonians is found. These operators include the so-called "shift" (changing only the potential parameters) and "ladder" (changing also the energy eigenvalue) operators. The explicit action on eigenfunctions is computed within a simple and symmetric three-subindex notation. It is shown that the whole set of operators close an su(2, 2) approximate to so(4, 2) dynamical Lie algebra. A unitary irreducible representation of this so(4, 2) differential realization is characterized. (C) 2011 Elsevier Inc. All rights reserved.