Neurosurgical Focus, cilt.56, sa.1, 2024 (SCI-Expanded)
OBJECTIVE Virtual simulation and imaging systems have evolved as advanced products of computing technology over the years. With advancements in mobile technology, smartphones, and tablets, the quality of display and processing speed have gradually improved, thanks to faster central processing units with higher capacity. Integrating these two technologies into the fields of healthcare and medical education has had a positive impact on surgical training. However, contemporary neurosurgical planning units are expensive and integrated neuronavigation systems in operating rooms require additional accessories. The aim of this study was to investigate the compatibility of smartphone applications in augmented reality (AR)-based craniotomy planning, which can be available even in disadvantaged workplaces with insufficient facilities. METHODS Thirty patients diagnosed with supratentorial glial tumor and who underwent operations between January 2022 and March 2023 were included in the study. The entire stages of the surgical procedures and the surgical plans were executed with neuronavigation systems. The patient CT scans were reconstructed using software and exported as a 3D figure to an AR-enhanced smartphone application. The evaluation of the application’s success was based on the spatial relationship of the AR-based artificial craniotomy to the neuronavigation-based craniotomy, with each AR-based craniotomy scaled from 0 to 3. RESULTS In the comparison between neuronavigation-based and AR fusion-based craniotomies, 8 of 30 (26.6%) patients scored 0 and were considered failed, 6 (20%) scored 1 and were considered ineffective, 7 (23.3%) scored 2 and were considered acceptable, and 9 (30%) scored 3 and were considered favorable. CONCLUSIONS AR technology has great potential to be a revolutionary milestone of neurosurgical planning, training, and education in the near future. In the authors’ opinion, with the necessary legal permissions, there is no obstacle to the integration of surgical technological systems with mobile technology devices such as smartphones and tablets that benefit from their low-budget requirements, wide-range availability, and built-in operating systems.