BIOELECTROCHEMISTRY, cilt.148, 2022 (SCI-Expanded)
Carbon material derived from the waste-based biomass human hair (H), which is naturally rich in pyridinic nitrogen, provides a significant benefit in biosensor applications with its dominant conductivity character. The carbon material was synthesized from human hair waste by the hydrothermal carbonization (HTC) method, which is a promising green synthesis. A morphological characterization of the carbon materials was performed. In this study, H and amine-functionalized multi-walled carbon nanotubes (NH2-MWCNT) were combined for the first time as a modifier, which enhanced the glassy carbon electrode (GCE) surface area for deoxyribonucleic acid (DNA) biosensor studies. Palbociclib (PLB) is clinically used in the treatment of breast cancer. The novel elec-trochemical nanobiosensor was used to investigate the dsDNA-PLB interaction to evaluate the possibility that PLB causes conformational changes in DNA structure and/or oxidative damage. The interaction was conducted based on the voltammetric signals of deoxyguanosine (dGuo) and deoxyadenosine (dAdo) by differential pulse voltammetry (DPV) on a bare and H + NH2-MWCNT modified GCE. The proposed analytical method was applied to a pharmaceutical dosage form with a satisfactory recovery of 98.25 %. The nanobiosensor was tested in the presence of some interfering agents. The binding mechanism of dsDNA-PLB was also evaluated by spectroscopic and theoretical calculations.