Structural and optical properties of an InxGa1-xN/GaN nanostructure


Creative Commons License

Korcak S., Oeztuerk M. K., Coerekci S., AKAOĞLU B., Yu H., Cakmak M., ...Daha Fazla

SURFACE SCIENCE, cilt.601, sa.18, ss.3892-3897, 2007 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 601 Sayı: 18
  • Basım Tarihi: 2007
  • Doi Numarası: 10.1016/j.susc.2007.04.088
  • Dergi Adı: SURFACE SCIENCE
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.3892-3897
  • Anahtar Kelimeler: metalorganic chemical vapor deposition, InxGa1-xN/GaN, X-ray reflectivity, photoluminescence, atomic force microscopy, ellipsometry, X-RAY, QUANTUM, PHOTOLUMINESCENCE
  • Ankara Üniversitesi Adresli: Hayır

Özet

The structural and optical properties of an InxGa1-x N/GaN multi-quantum well (MQW) were investigated by using X-ray diffraction (XRD), atomic force microscopy (AFM), spectroscopic ellipsometry (SE) and photoluminescence (PL). The MQW structure was grown on c-plane (0001)-faced sapphire substrates in a low pressure metalorganic chemical vapor deposition (MOCVD) reactor. The room temperature photoluminescence spectrum exhibited a blue emission at 2.84 eV and a much weaker and broader yellow emission band with a maximum at about 2.30 eV. In addition, the optical gaps and the In concentration of the structure were estimated by direct interpretation of the pseudo-dielectric function spectrum. It was found that the crystal quality of the InGaN epilayer is strongly related with the Si doped GaN layer grown at a high temperature of 1090 degrees C. The experimental results show that the growth MQW on the high-temperature (HT) GaN buffer layer on the GaN nucleation layer (NL) can be designated as a method that provides a high performance InGaN blue light-emitting diode (LED) structure. (C) 2007 Elsevier B.V. All rights reserved.