BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, cilt.48, sa.4, ss.1649-1665, 2022 (SCI-Expanded)
A new class of partial differential equations having symmetric orthogonal solutions is presented. The general equation is presented and orthogonality is obtained using the Sturm-Liouville approach. Conditions on the polynomial coefficients to have admissible partial differential equations are given. The general case is analyzed in detail, providing orthogonality weight function, three-term recurrence relations for the monic orthogonal polynomial solutions, as well as explicit form of these monic orthogonal polynomial solutions, which are solutions of an admissible and potentially self-adjoint linear second-order partial differential equation of hypergeometric type.