Edge General Position Sets in Fibonacci and Lucas Cubes


Klavzar S., Tan E.

BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, cilt.46, sa.4, 2023 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 46 Sayı: 4
  • Basım Tarihi: 2023
  • Doi Numarası: 10.1007/s40840-023-01517-y
  • Dergi Adı: BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, MathSciNet, zbMATH
  • Anahtar Kelimeler: General position set, Edge general position set, Partial cube, Fibonacci cube, Lucas cube, HYPERCUBES, RECOGNITION, NUMBER
  • Ankara Üniversitesi Adresli: Evet

Özet

A set of edges X ? E(G) of a graph G is an edge general position set if no three edges from X lie on a common shortest path in G. The cardinality of a largest edge general position set of G is the edge general position number of G. In this paper, edge general position sets are investigated in partial cubes. In particular, it is proved that the union of two largest (sic)-classes of a Fibonacci cube or a Lucas cube is a maximal edge general position set.