Evaluation of a biomimetic poly(e-caprolactone)/b-tricalcium phosphate multispiral scaffold for bone tissue engineering: In vitro and in vivo studies


Creative Commons License

Baykan E., Koc A., Elcin A. E., Elçin Y. M.

Biointerphases, cilt.9, sa.2, 2014 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 9 Sayı: 2
  • Basım Tarihi: 2014
  • Doi Numarası: 10.1116/1.4870781
  • Dergi Adı: Biointerphases
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Ankara Üniversitesi Adresli: Evet

Özet

© 2014 Author(s).In this study, the osteogenic potential of rat bone marrow mesenchymal stem cells (rBM-MSCs) on a biomimetic poly(e-caprolactone)/β-tricalcium phosphate (PCL/β-TCP) composite scaffold composed of parallel concentric fibrous membranes was evaluated in vitro and in vivo. PCL/β-TCP composite membranes were prepared by electrospinning and characterized by x-ray diffraction, differential scanning calorimetry, Fourier transform-infrared spectroscopy, and scanning electron microscopy (SEM). rBM-MSCs were seeded on three-dimensional multispiral scaffolds prepared by the assembly of composite membranes. The cell-scaffold constructs were cultured in osteogenic medium for 4 weeks. Histochemical studies and biochemical assays confirmed the osteogenic differentiation of rBM-MSCs inside the scaffold by documenting the dense mineralized extracellular matrix formation starting from the second week of culture. In the in vivo part of the study, cellscaffold constructs precultured for 7 days were implanted subcutaneously into the epigastric groin fascia of Wistar rats for a duration of 6 months. Ectopic bone-tissue like formation was documented by using computerized tomography, confocal laser microscopy, SEM, and histochemistry. In vivo findings indicated that the biomimetic multispiral scaffold seeded with rBM-MSCs supports the ectopic formation of new bone tissue in Wistar rats.