Developing a novel neutralizing monoclonal antibody against TrkB


Yildirim G. E., Yilmaz E.

3 BIOTECH, vol.14, no.10, 2024 (SCI-Expanded) identifier identifier identifier

  • Publication Type: Article / Article
  • Volume: 14 Issue: 10
  • Publication Date: 2024
  • Doi Number: 10.1007/s13205-024-04063-x
  • Journal Name: 3 BIOTECH
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, BIOSIS, CAB Abstracts, EMBASE, Veterinary Science Database
  • Ankara University Affiliated: Yes

Abstract

The TrkB receptor, which is highly expressed in various human cancers and considered a pro-oncogene, was targeted to develop neutralizing monoclonal antibodies against its immunoglobulin-like (Ig-like) domains. Recombinant TrkB-IgL peptide, including the Ig-like C2 type 1 (Ig-C2-type 1) and Ig-like C2 type 2 (Ig-C2-type 2) domains, was expressed and purified from E. coli. Mice were immunized with this peptide, and hybridoma clones producing anti-TrkB-IgL antibodies were generated. Among 23 ELISA-positive TrkB-IgL hybridoma clones, four (TrkB-IgL 5.11, 4.11, 4.6, 4.3) showed anti-proliferative effects compared to the control on human breast cancer (MCF-7) and human colon cancer (HCT116) cells, as assessed using the xCELLigence system. Western blot analysis revealed that TrkB-IgL 5.11 and 4.11 significantly suppressed TrkB-mediated signaling pathways compared to the control. Purified TrkB-IgL monoclonal antibodies (mAbs) exhibited anti-proliferative effects compared to both positive and negative controls using the xCELLigence system. The TrkB-IgL 5.11 mAb notably suppressed phosphorylation of TrkB, Akt, and ERK and induced Caspase-3 and Caspase-9 activities in a dose-dependent manner, as determined by Western blotting. Additionally, immunostaining confirmed the localization of these mAbs on the SH-SY5Y cell membrane, which is known for high TrkB expression. In conclusion, the TrkB-IgL 5.11 antibody effectively inhibits cancer cell proliferation and induces apoptosis by suppressing key signaling pathways. These findings demonstrate the potential of this antibody as a therapeutic agent for cancers that overexpress TrkB. Additionally, it is considered a promising candidate for humanization, which would facilitate its application in cancer treatment.