A Polynomial-Type Jost Solution and Spectral Properties of a Self-Adjoint Quantum-Difference Operator


AYGAR KÜÇÜKEVCİLİOĞLU Y., Bohner M.

COMPLEX ANALYSIS AND OPERATOR THEORY, cilt.10, sa.6, ss.1171-1180, 2016 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 10 Sayı: 6
  • Basım Tarihi: 2016
  • Doi Numarası: 10.1007/s11785-015-0463-x
  • Dergi Adı: COMPLEX ANALYSIS AND OPERATOR THEORY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.1171-1180
  • Ankara Üniversitesi Adresli: Evet

Özet

In this paper, we find a polynomial-type Jost solution of a self-adjoint -difference equation of second order. Then we investigate the analytical properties and asymptotic behavior of the Jost solution. We prove that the self-adjoint operator generated by the -difference expression of second order has essential spectrum filling the segment , . Finally, we examine the properties of the eigenvalues of L.