AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, vol.284, no.1, 2003 (SCI-Expanded)
After birth, a dramatic increase in fatty acid oxidation occurs in the heart, which has been attributed to an increase in L-carnitine levels and a switch from the liver (L) to muscle (M) isoform of carnitine palmitoyltransferase (CPT)-1. However, because M-CPT-1 is more sensitive to inhibition by malonyl CoA, a potent endogenous regulator of fatty acid oxidation, a switch to the M-CPT-1 isoform should theoretically decrease fatty acid oxidation. Because of this discrepancy, we assessed the contributions of myocardial L-carnitine content and CPT-1 isoform expression and kinetics to the maturation of fatty acid oxidation in newborn rabbit hearts. Although fatty acid oxidation rates increased between 1 and 14 days after birth, myocardial L-carnitine concentrations did not increase. Changes in the expression of L-CPT-1 or M-CPT-1 mRNA after birth also did not parallel the increase in fatty acid oxidation. The K-m of CPT-1 for carnitine and the IC50 for malonyl CoA remained unchanged between 1 and 10 days after birth. However, malonyl CoA levels dramatically decreased, due in part to an increase in malonyl CoA decarboxylase activity. Our data suggest that a decrease in malonyl CoA control of CPT-1 is primarily responsible for the increase in fatty acid oxidation seen in the newborn heart.