DUS Inverse Weibull Distribution and Parameter Estimation in Regression Model


Creative Commons License

Gül H. H., ACITAS S., BAYRAK H., SENOGLU B.

Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, cilt.27, sa.1, ss.42-50, 2023 (Hakemli Dergi) identifier

Özet

This paper considers various estimation methods to estimate the unknown parameters of the DUS Inverse Weibull (DIW) distribution using the maximum likelihood (ML), least squares (LS), weighted least squares (WLS), Cramer-von Mises (CVM) and the Anderson-Darling (AD) estimators. A Monte-Carlo simulation study is conducted to determine the most preferable estimators in terms of their efficiencies. Furthermore, the distribution of the error terms in the simple linear regression is assumed to be DIW to show the implementation of it to the linear models. We also carry out a simulation study for comparing the performances of the estimators of the unknown regression parameters.