Synthesis of Co/Co3O4 Heterostructure in N-Doped Porous, Amorphous Carbon: A Superior Electrochemical Sensor for Sensitive Determination of Alectinib in Various Fluids


Bugday N., Gabiam E. N., ERK N., BAY M., Genc A. A., Duygulu O., ...Daha Fazla

ACS Omega, 2024 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1021/acsomega.4c04821
  • Dergi Adı: ACS Omega
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Directory of Open Access Journals
  • Ankara Üniversitesi Adresli: Evet

Özet

Highly crystallized Co and Co3O4 nanoparticles embedded in an N-doped amorphous carbon matrix have been successfully fabricated by the molten-salt-assisted method using KClO3 and zeolitic imidazolate framework-12 (ZIF-12). Pyrolysis of ZIF-12 with different concentrations of KClO3 leads to embedded Co and Co3O4 nanoparticles in a conductive amorphous carbon network. The impact of salt concentration on the morphology and electrochemical performance of these composites was investigated for electrochemical sensor applications. By employing a straightforward and efficient technique, Co/Co3O4 heterostructures were successfully synthesized in N-doped porous amorphous carbon. The Co/Co3O4 carbon heterostructures were optimized by varying the salt concentration, resulting in a significant electrochemical sensor performance for detecting ALC in both bulk and biological fluids. The sensor demonstrates excellent sensitivity (62.97 nmol/L) and selectivity toward ALC, with a wide linear range (0.2-2 μM) and a low detection limit (18.89 nM). Furthermore, it displays remarkable stability and reproducibility, positioning it as a strong contender for practical use in pharmaceutical analysis and biomedical research. This study presents a significant advancement in electrochemical sensing technology and underscores the potential of Co/Co3O4 heterostructures in the development of high-performance sensors for detecting bioactive compounds in complex matrices.