Action-angle variables, ladder operators and coherent states


Campoamor-Stursberg R., Gadella M., KURU Ş., Negro J.

PHYSICS LETTERS A, cilt.376, sa.37, ss.2515-2521, 2012 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 376 Sayı: 37
  • Basım Tarihi: 2012
  • Doi Numarası: 10.1016/j.physleta.2012.06.027
  • Dergi Adı: PHYSICS LETTERS A
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.2515-2521
  • Anahtar Kelimeler: Coherent states, Action-angle variables, Ladder operators, Poschl-Teller potential, POSCHL-TELLER POTENTIALS, DYNAMICAL ALGEBRAS, HAMILTONIANS, REVIVALS, SPECTRUM, SYSTEMS
  • Ankara Üniversitesi Adresli: Evet

Özet

This Letter is devoted to the building of coherent states from arguments based on classical action-angle variables. First, we show how these classical variables are associated to an algebraic structure in terms of Poisson brackets. In the quantum context these considerations are implemented by ladder type operators and a structure known as spectrum generating algebra. All this allows to generate coherent states and thereby the correspondence of classical-quantum properties by means of the aforementioned underlying structure. This approach is illustrated with the example of the one-dimensional Poschl-Teller potential system. (c) 2012 Elsevier B.V. All rights reserved.