PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, cilt.89, ss.155-159, 2017 (SCI-Expanded)
Stanene is a two-dimensional (2D) buckled honeycomb structure which has been studied recently owing to its promising electronic properties for potential electronic and spintronic applications in nanodevices. In this article we present a first-principles study of electronic properties of fluorinated bilayer stanene. The effect of tensile strain, intrinsic spin-orbit and van der Waals interactions are considered within the framework of density functional theory. The electronic band structure shows a very small overlap between valence and conduction bands at the Gamma point which is a characteristic of semimetal in fluorinated bilayer stanene. A relatively high value of tensile strain is needed to open an energy band gap in the electronic band structure and the parity analysis reveals that the strained nanostructure is a trivial insulator. According to our results, despite the monolayer fluorinated stanene, the bilayer one is not an appropriate candidate for topological insulator.