TOMOGRAPHY, cilt.11, sa.10, 2025 (SCI-Expanded, Scopus)
Objective: This study aimed to evaluate the diagnostic accuracy of two cone beam computed tomography (CBCT) devices using 18 imaging modalities in detecting root fractures-vertical, horizontal, and oblique-in teeth with intracanal post systems. Materials and methods: Ninety-six were extracted; single-rooted mandibular premolars were endodontically treated and restored with Bundle, Reforpost, or Splendor Single Adjustable posts. Controlled fractures of different types were induced using a universal testing machine. Each tooth was scanned with NewTom 7G and NewTom Go (Quantitative Radiology, Verona, Italy) under nine imaging protocols per device; varying in dose and voxel size, yielding 1728 CBCT images. Three observers (a professor of endodontics; a specialist; and a postgraduate student in endodontics) independently evaluated the images. Results: Observers demonstrated almost perfect agreement (kappa >= 0.81) with the gold standard in fracture detection using NewTom 7G. No significant differences were found in sensitivity, specificity, or accuracy across voxel size and dose parameters for both devices in detecting fracture presence (p > 0.05). Similarly, both devices displayed comparable performance in identifying horizontal and oblique fractures (p > 0.05). However, in NewTom Go, regular and low doses with different voxel sizes showed reduced sensitivity and accuracy in detecting vertical fractures across all post systems (p <= 0.05). Conclusions: NewTom 7G, with its advanced detector system and smaller voxel sizes, provides superior diagnostic accuracy for root fractures. In contrast, NewTom Go displays reduced sensitivity for vertical fractures at lower settings. Clinical relevance: CBCT device selection and imaging protocols significantly affect the diagnosis of vertical root fractures.