Synthesis and molecular docking studies of some novel antimicrobial benzamides


Acar C., YALÇIN ÖZKAT G., ERTAN BOLELLİ T., KAYNAK ONURDAĞ F., ÖKTEN S., Sener F., ...Daha Fazla

BIOORGANIC CHEMISTRY, cilt.94, 2020 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 94
  • Basım Tarihi: 2020
  • Doi Numarası: 10.1016/j.bioorg.2019.103368
  • Dergi Adı: BIOORGANIC CHEMISTRY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, BIOSIS, Biotechnology Research Abstracts, CAB Abstracts, Chimica, EMBASE, MEDLINE, Veterinary Science Database
  • Anahtar Kelimeler: Benzamide, Antimicrobial activity, Molecular docking, DNA-gyrase, FtsA, MICROBIOLOGICAL ACTIVITY, POSSIBLE METABOLITES, DNA GYRASE, PHENYLACETAMIDES, INHIBITORS, DERIVATIVES, RESISTANCE, DESIGN, AMIDES, BUGS
  • Ankara Üniversitesi Adresli: Evet

Özet

Common use of classical antibiotics has caused to the growing emergence of many resistant strains of pathogenic bacteria. Therefore, we aimed to synthesize a number of N-(2-hydroxy-(4 or 5)-nitrophenyl)benzamide derivatives as a new class of antimicrobial compounds. Moreover, our second goal is to predict the interaction between active structures and enzymes (DNA-gyrase and FtsA) in the binding mode. In this study, thirteen N-(2-hydroxy-(4 or 5-nitrophenyl)-substituted-benzamides were synthesized and determined for their antimicrobial activity using the microdilution method. According to this work, none of the compounds showed any activity against Candida albicans and its clinical isolate. Some of the benzamides (4N1, 5N1, 5N2) displayed very significant activity against Staphylococcus aureus and MSSA with < 4 mu g/ml MIC value, even they were found to be more potent than ceftazidime. 4N1 was also found to be more effective than gentamicin against Enterococcus faecalis clinical isolate. Molecular docking studies revealed that 4N1, 5N1, and 5N2 showed a good interactions with DNA-gyrase. Moreover, 5N1 has interacted with FtsA enzyme in the binding mode, as well. Only compound 5N4 displayed very good activity against Escherichia coli ATCC 25922. These findings showed us that 4N1, 5N1, 5N2, and 5N4 could be lead compounds to discover new antibacterial candidates against multidrug-resistant strains.