On Integral Generalization of Lupas , -Jain Operators


Creative Commons License

Patel P., Bodur M.

FILOMAT, cilt.36, sa.3, ss.729-740, 2022 (SCI-Expanded, Scopus) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 36 Sayı: 3
  • Basım Tarihi: 2022
  • Doi Numarası: 10.2298/fil2203729p
  • Dergi Adı: FILOMAT
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, zbMATH
  • Sayfa Sayıları: ss.729-740
  • Anahtar Kelimeler: Lupas,-Jain operators, local approximation, weighted approximation, Voronovskaya type theorem, APPROXIMATION PROPERTIES
  • Açık Arşiv Koleksiyonu: AVESİS Açık Erişim Koleksiyonu
  • Ankara Üniversitesi Adresli: Evet

Özet

This paper mainly is a natural continuation of "On Lupas,-Jain Operators" constructed by functions on [0, infinity). We first present the weighted uniform approximation and provide a quantitative estimate for integral generalization of Lupas,-Jain operators. We also scrutinize the order of approximation in regards to local approximation results in sense of a classical approach, Peetre's K-functional and Lipschitz class. Then, we prove that given operators can be approximated in terms of the Steklov means (Steklov averages). Lastly, a Voronovskaya-type asymptotic theorem is given.