Maximal and singular operators in the local "complementary" generalized variable exponent Morrey spaces on unbounded sets


AYKOL KOCAKUŞAKLI C., Badalov X. A., Hasanov J. J.

QUAESTIONES MATHEMATICAE, cilt.43, sa.10, ss.1487-1512, 2020 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 43 Sayı: 10
  • Basım Tarihi: 2020
  • Doi Numarası: 10.2989/16073606.2019.1635539
  • Dergi Adı: QUAESTIONES MATHEMATICAE
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, MathSciNet, zbMATH
  • Sayfa Sayıları: ss.1487-1512
  • Anahtar Kelimeler: Maximal operator, singular integral operators, commutators, local "complementary" generalized Morrey space, BMO space, Primary, WEIGHTED NORM INEQUALITIES, LEBESGUE SPACES, INTEGRAL-OPERATORS, SUFFICIENT CONDITIONS, BOUNDEDNESS, COMMUTATORS
  • Ankara Üniversitesi Adresli: Evet

Özet

In this paper we consider local "complementary" generalized Morrey spaces with variable exponent p(x) and a general function omega(r) defining a Morrey-type norm. We prove the boundedness of the Hardy-Littlewood maximal operator and Calderon-Zygmund singular operators with standard kernel in such spaces in case of unbounded sets omega subset of Double-struck capital R-n. Also we prove the boundedness of commutators of Hardy-Littlewood maximal operator and Calderon-Zygmund singular integral operators.