A performance study of a horizontal-axis micro-turbine in a numerical wave flume


Tutar M., Mendi M.

Conference on Sustainable Solutions for Energy and Environment (EENVIRO), Bucharest, Romanya, 26 - 28 Ekim 2016, cilt.112, ss.83-91 identifier identifier

  • Yayın Türü: Bildiri / Tam Metin Bildiri
  • Cilt numarası: 112
  • Doi Numarası: 10.1016/j.egypro.2017.03.1066
  • Basıldığı Şehir: Bucharest
  • Basıldığı Ülke: Romanya
  • Sayfa Sayıları: ss.83-91
  • Anahtar Kelimeler: Savonius rotor, wave energy, numerical wave flume (NWF), volume of fluid element (VOF), finite volume method (FVM), energy conversion, ORBITAL MOTION, SAVONIUS ROTOR
  • Ankara Üniversitesi Adresli: Evet

Özet

Numerical studies of performance of a 3-bladed Savonius type horizontal-axis wave energy converter are presented. Numerical simulations based on a volume of fluid (VOF) method coupled with a finite volume method (FVM) approach are performed in a numerical wave flume (NWF) for specified values of flow physics and turbine blade geometry conditions. Once validated against experimental data, the numerical simulations are extended to investigate the overall performance of the turbine over a very large range of wave height, wave frequency, and the submergence level for the same water depth in the context of optimization of a design of a small scale Savonius rotor. From the numerical results obtained and validated against the experimental data it can be concluded that the flow characteristics are strongly dependent upon differing wave propagation conditions and energy conversion rate can be increased with a proper combination of selected wave height and frequency for the investigated parametric value range. (C) 2017 Published by Elsevier Ltd.