JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, cilt.89, sa.17, ss.3213-3240, 2019 (SCI-Expanded)
Joint modelling skewness and heterogeneity is challenging in data analysis, particularly in regression analysis which allows a random probability distribution to change flexibly with covariates. This paper, based on a skew Laplace normal (SLN) mixture of location, scale, and skewness, introduces a new regression model which provides a flexible modelling of location, scale and skewness parameters simultaneously. The maximum likelihood (ML) estimators of all parameters of the proposed model via the expectation-maximization (EM) algorithm as well as their asymptotic properties are derived. Numerical analyses via a simulation study and a real data example are used to illustrate the performance of the proposed model.