Optical coherence tomography of Intacs


Ucakhan Ö. Ö., Tello C., Liebmann J., Ritch R., Asbell P.

JOURNAL OF CATARACT AND REFRACTIVE SURGERY, cilt.27, sa.10, ss.1535, 2001 (SCI-Expanded) identifier identifier identifier identifier

Özet

Twisted van der Waals heterostructures have latterly received prominent attention for their many remarkable experimental properties, and the promise that they hold for realising elusive states of matter in the laboratory. We propose that these systems can, in fact, be used as a robust quantum simulation platform that enables the study of strongly correlated physics and topology in quantum materials. Among the features that make these materials a versatile toolbox are the tunability of their properties through readily accessible external parameters such as gating, straining, packing and twist angle; the feasibility to realize and control a large number of fundamental many-body quantum models relevant in the field of condensed-matter physics; and finally, the availability of experimental readout protocols that directly map their rich phase diagrams in and out of equilibrium. This general framework makes it possible to robustly realize and functionalize new phases of matter in a modular fashion, thus broadening the landscape of accessible physics and holding promise for future technological applications.