COMPLEX FACTORIZATION BY CHEBYSEV POLYNOMIALS


ŞAHİN M., TAN E., YILMAZ S.

MATEMATICHE, cilt.73, sa.1, ss.179-189, 2018 (ESCI) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 73 Sayı: 1
  • Basım Tarihi: 2018
  • Doi Numarası: 10.4418/2018.73.1.13
  • Dergi Adı: MATEMATICHE
  • Derginin Tarandığı İndeksler: Emerging Sources Citation Index (ESCI), Scopus
  • Sayfa Sayıları: ss.179-189
  • Anahtar Kelimeler: Chebyshev polynomials, complex factorization, binomial sums, ORTHOGONAL POLYNOMIALS, FIBONACCI
  • Ankara Üniversitesi Adresli: Evet

Özet

Let {a(i)}, {b(i)} be real numbers for 0 <= i <= r - 1, and define a r-periodic sequence {v(n)} with initial conditions v(0) , v(1) and recurrences v(n) = a(t)v(n-1) vertical bar b(t)v(n-)(2) where n t (mod r) (n >= 2). In this paper, by aid of Chebyshev polynomials, we introduce a new method to obtain the complex factorization of the sequence {v(n)} so that we extend some recent results and solve some open problems. Also, we provide new results by obtaining the binomial sum for the sequence {v(n)} by using Chebyshev polynomials.