Exploring the attention process differentiation of attention deficit hyperactivity disorder (ADHD) symptomatic adults using artificial intelligence on electroencephalography (EEG) signals


Creative Commons License

Guney G., Kisacik E., Kalaycioglu C., Saygili G.

TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, cilt.29, sa.5, ss.2312-2325, 2021 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 29 Sayı: 5
  • Basım Tarihi: 2021
  • Doi Numarası: 10.3906/elk-2011-3
  • Dergi Adı: TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Applied Science & Technology Source, Compendex, Computer & Applied Sciences, INSPEC, TR DİZİN (ULAKBİM)
  • Sayfa Sayıları: ss.2312-2325
  • Anahtar Kelimeler: Attention deficit hyperactivity disorder, artificial neural network, support vector machine, electroen-cephalography, visual continuous performance test, EVENT-RELATED POTENTIALS, RESPONSE-INHIBITION, DEFICIT/HYPERACTIVITY DISORDER, BRAIN ACTIVITY, CHILDREN, GO/NOGO, FLOW
  • Ankara Üniversitesi Adresli: Evet

Özet

Attention deficit and hyperactivity disorder (ADHD) onset in childhood and its symptoms can last up till adulthood. Recently, electroencephalography (EEG) has emerged as a tool to investigate the neurophysiological connection of ADHD and the brain. In this study, we investigated the differentiation of attention process of healthy subjects with or without ADHD symptoms under visual continuous performance test (VCPT). In our experiments, artificial neural network (ANN) algorithm achieved 98.4% classification accuracy with 0.98 sensitivity when P2 event related potential (ERP) was used. Additionally, our experimental results showed that fronto-central channels were the most contributing. Overall, we conclude that the attention process of adults with or without ADHD symptoms become a key feature to separate individuals especially in fronto-central regions under VCPT condition. In addition, using P2 ERP component under VCPT task can be a highly accurate approach to investigate EEG signal differentiation on ADHD-symptomatic adults.