Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, cilt.847, 2023 (SCI-Expanded)
The radioactivity of 76160Os84 and 74156W82 that lie at the two-proton drip line has been measured in an experiment performed at the Accelerator Laboratory of the University of Jyväskylä. The 160Os nuclei were produced using fusion-evaporation reactions induced by a beam of 310 MeV 58Ni ions bombarding a 106Cd target. The 160Os ions were separated in flight using the recoil separator MARA and implanted into a double-sided silicon strip detector, which was used to measure their decays. The α decays of the ground state of 160Os (Eα = 7092(15) keV, t1/2 = 97−32+97 μs) and its isomeric state (Eα = 8890(10) keV, t1/2 = 41−9+15 μs) were measured, allowing the excitation energy of the isomer to be determined as 1844(18) keV. These α-decay properties and the excitation energy of the isomer are compared with systematics. The α decays were correlated with subsequent decays to investigate the β decays of the ground state of 156W, revealing that unlike its isotones, both low-lying isomers were populated in its daughter nuclide, 156Ta. An improved value for the half-life of the proton-decaying high-spin isomeric state in 73156Ta83 of 333−22+25 ms was obtained in a separate experiment using the same experimental systems with a 102Pd target. This result was employed to improve the precision of the half-life determined for 156W, which was measured as 157−34+57 ms.