TWO-WEIGHTED INEQUALITIES FOR RIESZ POTENTIAL AND ITS COMMUTATORS IN GENERALIZED WEIGHTED MORREY SPACES


AYKOL KOCAKUŞAKLI C., Hasanov J. J., Safarov Z.

MATEMATICKI VESNIK, cilt.75, sa.1, ss.37-49, 2023 (ESCI) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 75 Sayı: 1
  • Basım Tarihi: 2023
  • Doi Numarası: 10.57016/mv-edtc1613
  • Dergi Adı: MATEMATICKI VESNIK
  • Derginin Tarandığı İndeksler: Emerging Sources Citation Index (ESCI), Scopus, Academic Search Premier, zbMATH, Directory of Open Access Journals
  • Sayfa Sayıları: ss.37-49
  • Anahtar Kelimeler: phrases, Maximal operator, Riesz potential, commutator, weighted Lebegue, space, generalized weighted Morrey space, BMO space, NORM INEQUALITIES, OPERATORS, BOUNDEDNESS, INTEGRALS, HARDY
  • Ankara Üniversitesi Adresli: Evet

Özet

In this paper we find the conditions for the boundedness of Riesz potential I & alpha; and its commutators from the generalized weighted Morrey spaces Mp,& phi;1 & omega;1 (Rn) to the generalized weighted Morrey spaces Mq & omega;2,& phi;2 (Rn), where 0 < & alpha; < n, 1 < p < n & alpha;, p1 - q1 = n & alpha;, (& omega;1, & omega;2) & ISIN; Ap,q(Rn), & phi;1, & phi;2 are generalized functions and b & ISIN; BMO(Rn). Furthermore, we give some applications of our results.