Extensions of strongly π-regular rings


Creative Commons License

Chen H., KÖSE H., Kurtulmaz Y.

Bulletin of the Korean Mathematical Society, cilt.51, sa.2, ss.555-565, 2014 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 51 Sayı: 2
  • Basım Tarihi: 2014
  • Doi Numarası: 10.4134/bkms.2014.51.2.555
  • Dergi Adı: Bulletin of the Korean Mathematical Society
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.555-565
  • Anahtar Kelimeler: B-ideal, Periodic ideal, Strongly π-regular ideal
  • Ankara Üniversitesi Adresli: Evet

Özet

An ideal I of a ring R is strongly π -regular if for any x ∈ I there exist n ∈ ℕ and y ∈ I such that xn = xn+1y. We prove that every strongly π -regular ideal of a ring is a B-ideal. An ideal I is periodic provided that for any x ∈ I there exist two distinct m, n ∈ N such that xm = xn. Furthermore, we prove that an ideal I of a ring R is periodic if and only if I is strongly π -regular and for any u ∈ U(I), u-1 ∈ ℤ[u]. © 2014 Korean Mathematical Society.