FILOMAT, cilt.33, sa.11, ss.3497-3508, 2019 (SCI-Expanded)
In this paper, we focus on the semicommutative property of rings via idempotent elements. In this direction, we introduce a class of rings, so-called right e-semicommutative rings. The notion of right e-semicommutative rings generalizes those of semicommutative rings, e-symmetric rings and right e-reduced rings. We present examples of right e-semicommutative rings that are neither semicommutative nor e-symmetric nor right e-reduced. Some extensions of rings such as Dorroh extensions and some subrings of matrix rings are investigated in terms of right e-semicommutativity. We prove that if R is a right e-semicommutative clean ring, then the corner ring eRe is clean.