Determination of the activity of the<i> fimF</i> gene and its N-terminal domain disrupted mutant on biofilm formation and its contribution to the oxidative stress response in<i> S.</i> Typhimurium


Surkac T. N., AKÇELİK N., AKÇELİK M.

ANKARA UNIVERSITESI VETERINER FAKULTESI DERGISI, sa.1, ss.23-33, 2025 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Basım Tarihi: 2025
  • Doi Numarası: 10.33988/auvfd.1390023
  • Dergi Adı: ANKARA UNIVERSITESI VETERINER FAKULTESI DERGISI
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, CAB Abstracts, EMBASE, Veterinary Science Database, TR DİZİN (ULAKBİM)
  • Sayfa Sayıları: ss.23-33
  • Ankara Üniversitesi Adresli: Evet

Özet

Fimbriae is an important virulence factor which plays a key role in cell attachment and colonization of the intestinal mucosa during an infection of Salmonella, a pathogen that causes gastroenteritis and systemic infection in humans. In S. Typhimurium, type 1 fimbriae production strengthens the oxidative stress response. This study aimed to determine the effectiveness of the fimF gene and its N-terminal domain on biofilm formation in S. Typhimurium and their contribution to the oxidative stress response. Before the experiments to prove whether the N-terminal domain of the FimF protein is the region that determines the mechanism and function of the fimF gene; only the N-terminal domain of the fimF gene was cloned behind the pBAD promoter. As a result of biofilm experiments on polystyrene surfaces, it was determined that the biofilm production capacity was reduced significantly in mutant strains in terms of fimF and dam genes (P<0.01). In the oxidative stress response experiment conducted in the presence of hydrogen peroxide (H2O2), it was determined that the mutant strains were more resistant to hydrogen peroxide than the wild-type strain, therefore Salmonella cells perceived the absence of Dam methylase enzyme and FimF protein as a critical internal stress condition and produced strong responses to these stress conditions. As a result of comparative analysis of the N-terminal domain cloned mutant strain with the wild-type, it was proven that the N-terminal domain of the protein in question acts as an adapter protein, due to its close similarities with the wild-type.