In vitro interactions of two pesticides, propazine and quinoxyfen with bovine serum albumin: Spectrofluorometric and molecular docking investigations


Duman B., Erkmen C., Zahirul Kabir M., Ching Yi L., Mohamad S. B., USLU B.

Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, cilt.300, 2023 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 300
  • Basım Tarihi: 2023
  • Doi Numarası: 10.1016/j.saa.2023.122907
  • Dergi Adı: Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, BIOSIS, CAB Abstracts, Chemical Abstracts Core, Chimica, Compendex, EMBASE, INSPEC, MEDLINE, Veterinary Science Database
  • Anahtar Kelimeler: Bovine serum albumin, Fluorescence, Molecular docking, Propazine, Quinoxyfen
  • Ankara Üniversitesi Adresli: Evet

Özet

Binding mechanisms of two selected pesticides, propazine (PRO) and quinoxyfen (QUI) with bovine serum albumin (BSA) was examined using fluorescence, absorption and molecular docking methods. Intrinsic fluorescence of BSA was quenched in the presence of both PRO and QUI. The quenching was ascertained to be conversely linked to temperature, which suggested the contribution of static quenching process in the PRO–BSA and QUI–BSA complex formations. This results were validated by the enhancement in absorption spectrum of BSA upon binding with PRO and QUI. Binding constant values (Kf = 9.55–0.60 × 10–3 M−1 for PRO–BSA system; Kf = 7.08–5.01 × 102 M−1 for QUI–BSA system) and number of binding site (n) values for the PRO–BSA and QUI–BSA systems at different temperatures affirmed a weak binding strength with a set of equivalent binding sites on BSA. Thermodynamic data obtained for both the PRO–BSA and QUI–BSA interactions predicted that the association process was spontaneous and non-covalent contacts such as hydrophobic interactions, van der Waals forces and hydrogen bonds participated in the binding reactions. This result was further supported by the molecular docking assessments. Three-dimensional spectral results revealed the microenvironmental alterations near tryptophan (Trp) and tyrosine (Tyr) residues in BSA by the addition of PRO and QUI. The docking analysis demonstrated the binding pattern for the PRO–BSA and QUI–BSA systems and disclosed the preferred binding site of both PRO and QUI as site I (subdomain IIA) of BSA.