Bovine Herpesvirus Type 4 (BoHV-4) Vector Delivering Nucleocapsid Protein of Crimean-Congo Hemorrhagic Fever Virus Induces Comparable Protective Immunity against Lethal Challenge in IFNα/β/γR-/- Mice Models


Creative Commons License

Farzani T. A., Foldes K., Hanifehnezhad A., Ilce B. Y., BİLGE DAĞALP S., Khiabani N. A., ...Daha Fazla

VIRUSES-BASEL, sa.3, 2019 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Basım Tarihi: 2019
  • Doi Numarası: 10.3390/v11030237
  • Dergi Adı: VIRUSES-BASEL
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Anahtar Kelimeler: Crimean-Congo hemorrhagic fever, nucleocapsid, bovine herpesvirus type 4, IFN alpha/beta/gamma R-/- mice, lethal dose, passive antibody transfer, RIFT-VALLEY FEVER, NUCLEOPROTEIN, BOVINE-HERPESVIRUS-4, TRANSMISSION, ANTIBODIES
  • Ankara Üniversitesi Adresli: Evet

Özet

Crimean-Congo hemorrhagic fever virus (CCHFV) is the causative agent of a tick-borne infection with a significant mortality rate of up to 40% in endemic areas, with evidence of geographical expansion. Due to a lack of effective therapeutics and control measures, the development of a protective CCHFV vaccine remains a crucial public health task. This paper describes, for the first time, a Bovine herpesvirus type 4 (BoHV-4)-based viral vector (BoHV4- increment TK-CCHFV-N) and its immunogenicity in BALB/c and protection potential in IFN alpha/beta/gamma R-/- mice models in comparison with two routinely used vaccine platforms, namely, Adenovirus type 5 and a DNA vector (pCDNA3.1 myc/His A), expressing the same antigen. All vaccine constructs successfully elicited significantly elevated cytokine levels and specific antibody responses in immunized BALB/c and IFN alpha/beta/gamma R-/- mice. However, despite highly specific antibody responses in both animal models, the antibodies produced were unable to neutralize the virus in vitro. In the challenge experiment, only the BoHV4- increment TK-CCHFV-N and Ad5-N constructs produced 100% protection against lethal doses of the CCHFV Ank-2 strain in IFN alpha/beta/gamma R-/- mice. The delivery platforms could not be compared due to similar protection rates in IFN alpha/beta/gamma R-/- mice. However, during the challenge experiment in the T cell and passive antibody transfer assay, BoHV4- increment TK-CCHFV-N was dominant, with a protection rate of 75% compared to others. In conclusion, vector-based CCHFV N protein expression constitutes an effective approach for vaccine development and BoHV-4 emerged as a strong alternative to previously used viral vectors.