Investigation of the apoptotic and cell cycle effects of sorafenib and doxorubicin on URG4/URGCP in leukemia cells


DODURGA Y., ELMAS L., Seçme M., Şirin N., Avci C. B., bağcı g., ...Daha Fazla

Pamukkale Tıp Dergisi, cilt.17, sa.3, ss.498-508, 2024 (Hakemli Dergi) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 17 Sayı: 3
  • Basım Tarihi: 2024
  • Doi Numarası: 10.31362/patd.1476105
  • Dergi Adı: Pamukkale Tıp Dergisi
  • Derginin Tarandığı İndeksler: TR DİZİN (ULAKBİM)
  • Sayfa Sayıları: ss.498-508
  • Ankara Üniversitesi Adresli: Evet

Özet

Purpose: The aim of this study is to investigate the effects of anticancer drugs such as Sorafenib (SOR) and Doxorubicin (DOX) on URG4/URGCP mRNA levels in K562 and HL-60 leukemia cells, elucidating their effects on apoptosis and cell cycle. The effects of these drugs on apoptosis and the cell cycle in leukemia cells have been explored. This research aims to understand the cellular effects of drugs used in leukemia treatment and contribute valuable insights to the drug development processes in leukemia therapy. Materials and methods: DOX and SOR were evaluated for their IC50 values in K562 and HL-60 cell lines using the CellTiter-Glo assay (Promega, USA), based on ATP measurement. Total RNA isolation was performed using Trizol reagent in both control and dose groups of each treated cell line. Following RNA isolation, cDNAs were synthesized using the "Transcriptor High Fidelity cDNA Synthesis Kit". Subsequently, changes in mRNA expression levels were examined using specific primers for URG4/URGCP, Casp-3, Casp-8, Casp-9, FADD, DR4, TRADD, CCDN1, CDK4, CDK6, PTEN, P53, and Rel-A genes. Results: In the groups treated with Sorafenib, the IC50 dose for HL-60 cell line was calculated as 40 μM at the 24th hour, and for K562 cell line, it was calculated as 40 μM at the 48th hour. In the groups treated with Doxorubicin, the IC50 doses were calculated as 50 μM at the 48th hour for HL-60 cell line, and as 50 μM at the 72nd hour for K562 cell line. Significant increases were observed in the mRNA expression levels of Casp-8, Casp-9, TRADD, DR4, Rel A, and FADD genes in the groups treated with SOR, while a decrease was observed in the mRNA expression levels of URG4/URGCP, CCDN1, CDK4, and CDK6 genes. In the groups treated with DOX, significant increases were observed in the fold changes of Casp-3, Casp-8, P53, and PTEN genes. However, a significant decrease in mRNA expression levels was observed in URG4/URGCP, CCDN1, and CDK4 genes. Conclusion: As a result, it has been demonstrated that both SOR and DOX may play a role in regulating the mRNA expressions of URG4/URGCP, Casp-3, Casp-8, Casp-9, CDK6, CDK4, CCND1, P53, PTEN, TRADD, DR4, Rel A, and FADD genes in HL-60 and K562 cells.