Evaluation of aptamer and molecularly imprinted polymers as a first hybrid sensor for leptin detection at femtogram levels


ERKMEN C., AYDOĞDU TIĞ G., USLU B.

TALANTA, cilt.265, 2023 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 265
  • Basım Tarihi: 2023
  • Doi Numarası: 10.1016/j.talanta.2023.124809
  • Dergi Adı: TALANTA
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, L'Année philologique, Aerospace Database, Analytical Abstracts, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, CAB Abstracts, Chemical Abstracts Core, Chimica, Communication Abstracts, Compendex, Food Science & Technology Abstracts, Metadex, Pollution Abstracts, Veterinary Science Database, Civil Engineering Abstracts
  • Ankara Üniversitesi Adresli: Evet

Özet

Selective and sensitive determination of macromolecules maintains its importance in diagnosing and determining diseases to protect human health. In this study, a hybrid sensor designed with dual recognition elements consisting of both aptamers (Apt) and molecularly imprinted polymers (MIPs) was carried out for the ultrasensitive determination of Leptin. Firstly, the screen-printed electrode (SPE) surface was coated with platinum nanospheres (Pt NSs) and gold nanoparticles (Au NPs) to provide immobilization of the Apt[Leptin] complex on the surface. In the next step, the formed polymer layer around the complex using the electropolymerization of orthophenilendiamine (oPD) kept the Apt molecules on the surface more effectively. As expected, a synergistic effect occurred between the formed MIP cavities by removing Leptin from the surface and the embedded Apt molecules to fabricate a hybrid sensor. Under optimal conditions, responses in differential pulse voltammetry (DPV) currents showed a linear response over a wide concentration range from 1.0 fg/mL to 10.0 pg/mL with a limit of detection (LOD) of 0.31 fg/mL for Leptin detection. Moreover, the effectiveness of the hybrid sensor was assessed using real samples, such as human serum and plasma samples, and satisfactory recovery findings (106.2-109.0%) were found.