Quantitative estimates for wavelet type extension of generalized Kantorovich operators


Bascanbaz-Tunca G., Erencin A., GÜVENİLİR A. F.

CONSTRUCTIVE MATHEMATICAL ANALYSIS, cilt.8, ss.39-48, 2025 (ESCI, Scopus, TRDizin) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 8
  • Basım Tarihi: 2025
  • Doi Numarası: 10.33205/cma.1784422
  • Dergi Adı: CONSTRUCTIVE MATHEMATICAL ANALYSIS
  • Derginin Tarandığı İndeksler: Emerging Sources Citation Index (ESCI), Scopus, Central & Eastern European Academic Source (CEEAS), Directory of Open Access Journals, TR DİZİN (ULAKBİM)
  • Sayfa Sayıları: ss.39-48
  • Ankara Üniversitesi Adresli: Evet

Özet

In this paper, we consider a sequence of operators as a wavelet type extension of univariate generalized Kantorovich operators depending on a positive real parameter given in [F. Altomare, M. Cappelletti Montano, V. Leonessa and I. Ra,sa: A generalization of Kantorovich operators for convex compact subsets, Banach J. Math. Anal., 11 (3) (2017), 591-614]. We establish quantitative estimates for the rate of convergence of these operators in the continuous functions space and Lp-spaces in terms of modulus of continuity and K-functionals, respectively. Furthermore, variation preservation type property of the operators when the involved function is of bounded variation is provided.