JOURNAL OF FOOD SCIENCE AND TECHNOLOGY-MYSORE, 2024 (SCI-Expanded)
In this study, the changes in the physicochemical properties, color stability, and amino acid composition of cemen paste (CP) produced by adjusting to different pH levels (3.0, 4.0, 5.0, and 6.0) and enriched with different amounts (0%, 3%, 4% and 5%) of encapsulated raspberry powders (ERP) during 120 days of storage at 2.0 +/- 0.5 degrees C were investigated. ERP had an important potential for use as a food ingredient with its bioactive components (total phenolic content (TPC), anthocyanin and ascorbic acid), antioxidant activity and high redness values. Essential and non-essential amino acid composition, moisture content, pH, lightness (L*), redness (a*), yellowness (b*), chroma (C*) and hue angle ((o)h) values of cemen pastes (CPs) were significantly (p < 0.01) affected by initial pH of CP (I-pH), ERP levels (ERPL) and storage time (ST) parameters and all possible interactions. The inclusion of ERP contributed to the improvement of CP visual properties and color stability by increasing redness. CPs with lower I-pH values had higher a* values and higher color stability over the storage period. In general, increasing ERPL and decreasing I-pH resulted in decreased amino acid contents of CPs. In conclusion, acidification (3.0, 4.0) of I-pH of CP and using >= 4.00% ERP can be recommended as an effective way to provide more stable samples based on color characteristics and amino acid content. [GRAPHICS] .