Optimizing Chitosan/Collagen Type I/Nanohydroxyapatite Cross-linked Porous Scaffolds for Bone Tissue Engineering


KARAKEÇİLİ A., Korpayev S., ORHAN K.

APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, cilt.194, sa.9, ss.3843-3859, 2022 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 194 Sayı: 9
  • Basım Tarihi: 2022
  • Doi Numarası: 10.1007/s12010-022-03962-0
  • Dergi Adı: APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, PASCAL, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, Biotechnology Research Abstracts, CAB Abstracts, Chemical Abstracts Core, Compendex, EMBASE, Food Science & Technology Abstracts, MEDLINE, Pollution Abstracts, Veterinary Science Database
  • Sayfa Sayıları: ss.3843-3859
  • Anahtar Kelimeler: Bio-composite scaffolds, Bone tissue engineering, Osteoblast differentiation, Natural polymers, Hydroxyapatite, IN-VITRO, COLLAGEN, LINKING, FABRICATION
  • Ankara Üniversitesi Adresli: Evet

Özet

Bio-composite scaffolds mimicking the natural microenvironment of bone tissue offer striking advantages in material-guided bone regeneration. The combination of biodegradable natural polymers and bioactive ceramics that leverage potent bio-mimicking cues has been an active strategy to achieve success in bone tissue engineering. Herein, a competitive approach was followed to point out an optimized bio-composite scaffold in terms of scaffold properties and stimulation of osteoblast differentiation. The scaffolds, composed of chitosan/collagen type I/nanohydroxyapatite (Chi/Coll/nHA) as the most attractive components in bone tissue engineering, were analyzed. The scaffolds were prepared by freeze-drying method and cross-linked using different types of cross-linkers. Based on the physicochemical and mechanical characterization, the scaffolds were eliminated comparatively. All types of scaffolds displayed highly porous structures. The cross-linker type and collagen content had prominent effects on mechanical strength. Glyoxal cross-linked structures displayed optimum mechanical and structural properties. The MC3T3-E1 proliferation, osteogenic-related gene expression, and matrix mineralization were better pronounced in collagen presence and triggered as collagen type I amount was increased. The results highlighted that glyoxal cross-linked scaffolds containing equal amounts of Chi and Coll by mass and 1% (w/v) nHA are the best candidates for osteoblast differentiation and matrix mineralization.