Analele Stiintifice ale Universitatii Al I Cuza din Iasi - Matematica, cilt.3, sa.F2, ss.807-822, 2016 (SCI-Expanded)
© 2016, Universitatii Al.I.Cuza din Iasi. All rights reserved.Let R be an arbitrary ring with identity and M a right R-module with the endomorphism ring S = EndR(M). Let F be a fully invariant submodule of M. The module M is called F -inverse split if for all f ∈ S, f-1(F) is a direct summand of M. This definition produces Rickart modules in the sense of Lee, Rizvi and Roman, namely, if M is F -inverse split, then M/F is Rickart. In this paper, we specialize the fully invariant submodule F of the module M as Z̅(M) and δ(M), and study various basic characterizations and properties of Z̅(·)-inverse split modules and δ(·)-inverse split modules.