Determination of mold contamination using ergosterol imprinted particles


Oktay Basegmez H. I., Baydemir Pesint G., Nergiz M., Zenger O.

BIOTECHNOLOGY PROGRESS, cilt.37, sa.1, 2021 (SCI-Expanded, Scopus) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 37 Sayı: 1
  • Basım Tarihi: 2021
  • Doi Numarası: 10.1002/btpr.3089
  • Dergi Adı: BIOTECHNOLOGY PROGRESS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Applied Science & Technology Source, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, Biotechnology Research Abstracts, CAB Abstracts, Chemical Abstracts Core, Compendex, Computer & Applied Sciences, EMBASE, Environment Index, Food Science & Technology Abstracts, MEDLINE, Pollution Abstracts, Veterinary Science Database
  • Ankara Üniversitesi Adresli: Hayır

Özet

Ergosterol is a key biochemical marker for fungal mycelial growth. In this study, molecularly ergosterol imprinted particles (Erg-MIPs) were newly synthesized for the selective detection of ergosterol in mold samples. Erg-MIPs were characterized via scanning electron microscopy, swelling studies, and surface area measurements. Maximum selective ergosterol adsorption achieved as 28.50 mg/g Erg-MIP. Selectivity studies showed that Erg-MIPs adsorbed Erg 2.01 and 3.27 times higher than that of cholesterol and stigmasterol, respectively. Erg adsorption fromAspergillus nigerwas found as 23.87 mg/g. Reusability of Erg-MIPs was studied and decrease in Erg adsorption capacity of the particles was negligible (3%). Erg-MIPs are good affinity materials for the selective Erg detection from food samples, prior to use in food industry.